博客
关于我
目标检测
阅读量:738 次
发布时间:2019-03-21

本文共 4012 字,大约阅读时间需要 13 分钟。

I. INTRODUCTION

Alexnet CNN architecture has become a cornerstone in modern computer vision tasks. Its success relies on several critical innovations, including data augmentation techniques and the ability to generalize from limited training data. This paper explores these aspects in depth, focusing on practical improvements for real-world applications.

II. ARCHITECTURES OF ALEXNET CNN

The Alexnet network comprises several key components: the convolutional layers, pooling operations, features extraction, and classification modules. The network's depth and regularization techniques ensure robust performance across various datasets. This section delves into the design choices that make Alexnet a reliable framework for image processing tasks.

III. PROPOSED METHOD

3.A. Data Augmentation
Data augmentation is a critical step in training deep learning models, particularly when labeled datasets are limited. Common techniques include rotation, flipping, scaling, and translation. These methods help to generate diverse training examples, improving model generalization能力提.

4.B. Training Rotation-Invariant CNN

To address rotation sensitivity, we propose a novel approach that enhances the network's invariance to rotations. By incorporating rotation augmentation during the training phase, the model learns to recognize objects regardless of their orientation in the input images.

IV. OBJECT DETECTION WITH RICNN

A. Object Proposal Detection
Proposal generation is a fundamental step in modern object detection frameworks. It selects potential regions of interest from the input image, which are then evaluated for containing objects. This process is crucial for efficient detection.

B. RICNN-Based Object Detection

R-CNN builds upon Faster R-CNN by introducing a region proposal network (RPN) to generate proposals more efficiently. This approach balances speed and accuracy, making it suitable for real-time applications. The rcnn framework has become a standard in object detection, offering robust performance across diverse scenarios.

V. EXPERIMENTS

A. Data Set Description
The experiments utilize several benchmark datasets, including PASCAL VOC and COCO. These datasets provide a comprehensive evaluation framework for testing the proposed methods. The images contain various object classes and contexts, ensuring robustness of the detection models.

B. Evaluation Metrics

We employ standard metrics for object detection, such as accuracy, recall, precision, and F1-score. These metrics assess both the ability of the model to detect objects and its accuracy in localization. The evaluation process ensures fair comparison across different approaches.

C. Implementation Details and Parameter Optimization

The implementation leverages state-of-the-art tools and frameworks. We use Python with PyTorch for prototyping and TensorFlow for production-ready models. Parameter optimization is performed using techniques like grid search and Bayesian methods to maximize model performance.

D. SVMs Versus Softmax Classifier

This study compares support vector machines (SVMs) and softmax classifiers in the context of object detection. While SVMs excel at linear classification tasks, softmax functions are more suitable for deep learning models due to their ability to handle non-linear decision boundaries.

E. Experimental Results and Comparisons

The experimental results demonstrate the effectiveness of the proposed methods in various scenarios. We compare our approach with existing baselines and highlight improvements in accuracy and efficiency. The experiments also show that the proposed rotation-invariant CNN significantly outperforms traditional methods in rotation-sensitive tasks.

参考文献

[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. 2012.
[2] He K, Zhang X, Ren S, et al. Deep residual learning //Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

转载地址:http://yiggz.baihongyu.com/

你可能感兴趣的文章
mysql 敲错命令 想取消怎么办?
查看>>
Mysql 整形列的字节与存储范围
查看>>
mysql 断电数据损坏,无法启动
查看>>
MySQL 日期时间类型的选择
查看>>
Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)
查看>>
MySQL 是如何加锁的?
查看>>
MySQL 是怎样运行的 - InnoDB数据页结构
查看>>
mysql 更新子表_mysql 在update中实现子查询的方式
查看>>
MySQL 有什么优点?
查看>>
mysql 权限整理记录
查看>>
mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
查看>>
MYSQL 查看最大连接数和修改最大连接数
查看>>
MySQL 查看有哪些表
查看>>
mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
查看>>
MySql 查询以逗号分隔的字符串的方法(正则)
查看>>
MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
查看>>
mysql 查询数据库所有表的字段信息
查看>>
【Java基础】什么是面向对象?
查看>>
mysql 查询,正数降序排序,负数升序排序
查看>>
MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
查看>>