博客
关于我
目标检测
阅读量:738 次
发布时间:2019-03-21

本文共 4012 字,大约阅读时间需要 13 分钟。

I. INTRODUCTION

Alexnet CNN architecture has become a cornerstone in modern computer vision tasks. Its success relies on several critical innovations, including data augmentation techniques and the ability to generalize from limited training data. This paper explores these aspects in depth, focusing on practical improvements for real-world applications.

II. ARCHITECTURES OF ALEXNET CNN

The Alexnet network comprises several key components: the convolutional layers, pooling operations, features extraction, and classification modules. The network's depth and regularization techniques ensure robust performance across various datasets. This section delves into the design choices that make Alexnet a reliable framework for image processing tasks.

III. PROPOSED METHOD

3.A. Data Augmentation
Data augmentation is a critical step in training deep learning models, particularly when labeled datasets are limited. Common techniques include rotation, flipping, scaling, and translation. These methods help to generate diverse training examples, improving model generalization能力提.

4.B. Training Rotation-Invariant CNN

To address rotation sensitivity, we propose a novel approach that enhances the network's invariance to rotations. By incorporating rotation augmentation during the training phase, the model learns to recognize objects regardless of their orientation in the input images.

IV. OBJECT DETECTION WITH RICNN

A. Object Proposal Detection
Proposal generation is a fundamental step in modern object detection frameworks. It selects potential regions of interest from the input image, which are then evaluated for containing objects. This process is crucial for efficient detection.

B. RICNN-Based Object Detection

R-CNN builds upon Faster R-CNN by introducing a region proposal network (RPN) to generate proposals more efficiently. This approach balances speed and accuracy, making it suitable for real-time applications. The rcnn framework has become a standard in object detection, offering robust performance across diverse scenarios.

V. EXPERIMENTS

A. Data Set Description
The experiments utilize several benchmark datasets, including PASCAL VOC and COCO. These datasets provide a comprehensive evaluation framework for testing the proposed methods. The images contain various object classes and contexts, ensuring robustness of the detection models.

B. Evaluation Metrics

We employ standard metrics for object detection, such as accuracy, recall, precision, and F1-score. These metrics assess both the ability of the model to detect objects and its accuracy in localization. The evaluation process ensures fair comparison across different approaches.

C. Implementation Details and Parameter Optimization

The implementation leverages state-of-the-art tools and frameworks. We use Python with PyTorch for prototyping and TensorFlow for production-ready models. Parameter optimization is performed using techniques like grid search and Bayesian methods to maximize model performance.

D. SVMs Versus Softmax Classifier

This study compares support vector machines (SVMs) and softmax classifiers in the context of object detection. While SVMs excel at linear classification tasks, softmax functions are more suitable for deep learning models due to their ability to handle non-linear decision boundaries.

E. Experimental Results and Comparisons

The experimental results demonstrate the effectiveness of the proposed methods in various scenarios. We compare our approach with existing baselines and highlight improvements in accuracy and efficiency. The experiments also show that the proposed rotation-invariant CNN significantly outperforms traditional methods in rotation-sensitive tasks.

参考文献

[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. 2012.
[2] He K, Zhang X, Ren S, et al. Deep residual learning //Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

转载地址:http://yiggz.baihongyu.com/

你可能感兴趣的文章
navicat 添加外键1215错误
查看>>
navicat 系列软件一点击菜单栏就闪退
查看>>
navicat 自动关闭_干掉Navicat!MySQL官方客户端到底行不行?
查看>>
Navicat 设置时间默认值(当前最新时间)
查看>>
navicat 连接远程mysql
查看>>
navicat:2013-Lost connection to MySQL server at ‘reading initial communication packet解决方法
查看>>
Navicate for mysql 数据库设计-数据库分析
查看>>
Navicat下载和破解以及使用
查看>>
Navicat中怎样将SQLServer的表复制到MySql中
查看>>
navicat创建连接 2002-can‘t connect to server on localhost(10061)且mysql服务已启动问题
查看>>
Navicat可视化界面导入SQL文件生成数据库表
查看>>
Navicat向sqlserver中插入数据时提示:当 IDENTITY_INSERT 设置为 OFF 时,不能向表中的标识列插入显式值
查看>>
Navicat因导入的sql文件中时间数据类型有参数而报错的原因(例:datetime(3))
查看>>
Navicat如何连接MySQL
查看>>
navicat导入.sql文件出错2006- MySQLserver has gone away
查看>>
Navicat导入海量Excel数据到数据库(简易介绍)
查看>>
Navicat工具Oracle数据库复制 or 备用、恢复功能(评论都在谈论需要教)
查看>>
Navicat工具中建立数据库索引
查看>>
navicat工具查看MySQL数据库_表占用容量_占用空间是多少MB---Linux工作笔记048
查看>>
navicat怎么导出和导入数据表
查看>>